首页> 外文OA文献 >Phonon-limited resistivity of graphene by first-principle calculations: electron-phonon interactions, strain-induced gauge field and Boltzmann equation
【2h】

Phonon-limited resistivity of graphene by first-principle calculations: electron-phonon interactions, strain-induced gauge field and Boltzmann equation

机译:通过第一性原理计算的声子限制石墨烯的电阻率:   电子 - 声子相互作用,应变诱导规范场和玻尔兹曼   方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electron-phonon coupling in graphene is extensively modeled and simulatedfrom first principles. We find that using an accurate model for thepolarizations of the acoustic phonon modes is crucial to obtain correctnumerical results. The interactions between electrons and acoustic phononmodes, the gauge field and deformation potential, are calculated at the DFTlevel in the framework of linear response. The zero-momentum limit of acousticphonons is interpreted as a strain pattern, allowing the calculation of theacoustic gauge field parameter in the GW approximation. The role of electronicscreening on the electron-phonon matrix elements is investigated. We then solvethe Boltzmann equation semi-analytically in graphene, including both acousticand optical phonon scattering. We show that, in the Bloch-Gr\"uneisen andequipartition regimes, the electronic transport is mainly ruled by theunscreened acoustic gauge field, while the contribution due to the deformationpotential is negligible and strongly screened. By comparing with experimentaldata, we show that the contribution of acoustic phonons to resistivity isdoping- and substrate-independent. The DFT+GW approach underestimates thiscontribution to resistivity by about 30 %. Above 270K, the calculatedresistivity underestimates the experimental one more severely, theunderestimation being larger at lower doping. We show that, beside remotephonon scattering, a possible explanation for this disagreement is theelectron-electron interaction that strongly renormalizes the coupling tointrinsic optical-phonon modes. Finally, after discussing the validity of theMatthiessen rule in graphene, we derive simplified analytical solutions of theBoltzmann equation to extract the coupling to acoustic phonons, related to thestrain-induced gauge field, directly from experimental data.
机译:从第一原理对石墨烯中的电子-声子耦合进行了广泛的建模和模拟。我们发现对于声子声子模式的极化使用精确的模型对于获得正确的数值结果至关重要。在线性响应的框架内,在DFT级别计算了电子与声子声模,相互作用的规范场和形变势之间的相互作用。声子的零动量极限被解释为应变模式,从而可以在GW近似中计算声表场参数。研究了电子筛选在电子声子矩阵元素上的作用。然后,我们在石墨烯中半解析求解Boltzmann方程,包括声子和光学声子散射。我们表明,在布洛赫-格里尼(Bloch-Gr)uneisen和等分态下,电子传输主要受未屏蔽的声规范场支配,而形变势的贡献可忽略不计并经过严格筛选。与实验数据比较,我们发现该贡献声子对电阻率的影响与掺杂和衬底无关,DFT + GW方法低估了约30%的电阻率,高于270K时,计算得出的电阻率严重低估了实验值,低掺杂时低估了较大的电阻率。声子散射,这种分歧的一个可能的解释是电子-电子相互作用强烈地重新规范了本征光子-声子模式的耦合,最后,在讨论了石墨烯中的Matthiessen规则的有效性之后,我们导出了玻尔兹曼方程的简化解析解以提取与与strstr有关的声子直接从实验数据中得出的ain诱导的规范场。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号